A Remark on Partitions and Triangles
نویسنده
چکیده
Let C be a circle divided into n parts equally. S = {P0, P1, . . . , Pn−1} denotes the set of the ends of these parts on C. Let C3(n) be the number of incongruent triangles inscribed in C, where the vertices of the triangles are chosen from S. In this note, we shall show a relation between the number C3(n) and the partitions into at most three parts. 2000 Mathematics Subject Classification. Primary 05A17; Secondary 11P8
منابع مشابه
On Tensor Product of Graphs, Girth and Triangles
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
متن کاملOn Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles
We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...
متن کاملDecompositions, Partitions, and Coverings with Convex Polygons and Pseudo-triangles
We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...
متن کاملA Remark on Prime Divisors of Lengths of Sides of Heron Triangles
A Heron triangle is a triangle having the property that the lengths of its sides as well as its area are positive integers. Let P be a fixed set of primes, let S denote the set of integers divisible only by primes in P. We prove that there are only finitely many Heron triangles whose sides a, b, c ∈ S and are reduced, that is gcd(a, b, c) = 1. If P contains only one prime ≡ 1 (mod 4) then all t...
متن کامل